
Exploring Diverse Ways To Improve An Agent On
Active Object Localization With Deep Reinforcement Learning

Jiawei Lu (jl5999) 1 Lingyu Zhang (lz2814) 1 Xinyi Liu (xl3057) 1 Yukai Song(ys3493) 1 Zixuan Yan (zy2501) 1

Abstract
Object localization is a research area with wide
range of application scenarios, which has been
extensively explored. However, there is a trend to
incorporate deep reinforcement learning recently
because it is believed to conform better to natu-
ral object searching process by human. Although
several previous works have built a concrete ba-
sis by defining state, action and reward, there is
still much field to explore for higher efficiency
and accuracy. In this paper, we proposed sev-
eral improvement in four aspects, including using
advanced CNNs to generate state representation,
defining more flexible action spaces, changing re-
ward function to avoid undesired activity in agent
and using mask instead cross for multiple objects.
All these improvements are tested with extensive
experiments and proved its effectiveness. They
are also flexible enough to get incorporated into
other works to achieve even higher performance.1

1. Introduction
Object localization has wide application scenarios, for exam-
ple, industrial production, navigation, agricultural produc-
tion and target localization. Traditionally, people have been
applying the sliding window at different scales for object lo-
calization. However, this approach is very space-consuming
and time-consuming because of too many candidates to as-
sess. To solve this problem, various methods based on deep
learning and convolutional neural networks are proposed
to reduce the number of candidate regions that are gener-
ated and need to be evaluated. These methods achieve great
results recently.

However, based on the rules humans look at an image and
localize the target, there is another way to solve the problem
by applying Deep Reinforcement Learning (DRL). Previous
researchers have made some attempts(Caicedo & Lazebnik,
2015; Bueno et al., 2017; Jie et al., 2016) in this area. The
basic idea of this paper is proposed in (Caicedo & Lazebnik,

1Source code available in: https://github.com/
Alexstrasza98/DRL-Object-Detection

2015), which will be elaborated in section 2.2. However,
the performance of original work is suboptimal and there
are still some fields to explore for achieving higher local-
ization efficiency and accuracy. Since the most important
components in RL is state, action and reward, and inhibition-
of-return (IoR) mechanism is also essential to find multiple
objects, we developed different strategies to improve local-
ization from these four aspects: 1. finding a better state
space by exploiting advanced cnn architecture; 2. enlarging
the action space; 3. exploring better reward functions; 4.
applying a better IoR mechanism.

For state space, the original paper used ZFNet as feature
extractor. However, there are some of the most popular state-
of-the-art pre-trained networks include Vgg16, DenseNet
and MobileNet. It is possible to replace the original fea-
ture extraction network with these pre-trained advanced
networks, in order to achieve better image feature represen-
tation and thus have a more complete state space.

For action space, the original work used a fixed stepsize α
for agent, which seems rigid. We manage to apply different
α instead fixing the stepsize when localizing. It also aligns
with how humans localize objects as humans usually do
quick scan first and then optimzie the target precisely. When
the current state is far from the target, the agent can use the
larger step-size and when the current state is close to the
target, the agent can use the smaller step-size.

For reward function, in order to have better localization accu-
racy as well as decreasing the localization steps, we propose
two methods for improvement, the first is to change the
reward from 1 to 0 when the agent make some improvement
in localizing before the terminal state. This approach helps
prevent the agent from wandering before termination. The
second is to combine the sign of Intersection-over-Union
(IoU ) and the real variation of IoU in the reward function.
The sign of the variation of IoU helps maintain the sensibil-
ity of the reward while the variation value of IoU includes
the information of the real progress. We use a parameter β
to control the value of the variation of IoU and have done
extensive tests to find the optimal β.

Last but not least, original paper decided to add a cross
when one object is found to avoid repeated localization.

https://github.com/Alexstrasza98/DRL-Object-Detection
https://github.com/Alexstrasza98/DRL-Object-Detection


Improvements of active object localization with deep reinforcement learning

Different from adding a cross symbol, which may disturb
the information of the image and negatively influence the
detection of other targets, we propose a new IoR approach.
We cover the detected region with a black mask with the
transparency of 0.8. The mask has a superimposed effect so
that the more you detect the region, the less likely you will
detect this region again.

The rest of this paper is organized as following: section 2
provides a review of previous works on Object Localization
with and without reinforcement learning, especially elabo-
rates the original paper we build our project on; section 3
demonstrates how we design the improved algorithm in all
four aspects in detail; section 4 includes the experiments
and results we conduct on each corresponding aspect, along
with comprehensive analysis; section 5 concludes the paper.

2. Related Work
2.1. Previous Works

Object localization has been successfully implemented with
sliding window classifiers. One of the most popular slid-
ing window method is based on HOG templates and SVM
classifiers. It has been extensively used to localize objects
(Felzenszwalb et al., 2010; Malisiewicz et al., 2011), parts
of objects (Endres et al., 2013; Lim et al., 2013), discrimi-
native patches (Singh et al., 2012; Juneja et al., 2013) and
even salient components of scenes (Juneja et al., 2013).
Since sliding windows are category-specific localization
algorithms, they are related to our work and are part of
our design. However, sliding windows make an exhaustive
search over the location-scale space, which deserves careful
consideration and modification.

Recently, the trend for object localization is the genera-
tion of category independent object proposals. Hosang et
al. (Hosang et al., 2014) provide an in depth analysis of
ten object proposal methods, whose goal is to generate the
smallest set of candidateregions with the highest possible re-
call. Compared to sliding windows, substantial acceleration
is achieved by reducing the set of candidates. Nonetheless,
object detection based on proposals still has thousands of
windows for a single image that may contain a few interest-
ing objects.

Some efforts have been made to reduce the number of eval-
uation areas during the detection process. For instance,
Lampertet al. (Hosang et al., 2014) proposed a branch-
and-bound algorithm to find high-scoring regions only eval-
uating a few locations. Recently, Gonzalez-Garcia et al.
(Gonzalez-Garcia et al., 2015) proposed an activesearch
strategy to accelerate category-specific R-CNN detectors.
Another related work is from Divvala et al. (Divvala et al.,
2009), which uses context to determine the localization
of objects. These methods attempt to optimize localized

computing resources, which are related to our approach.

Visual attention models have been investigated with the goal
of predicting where an observer is likely to orient the gaze
(Borji & Itti, 2012). These models typically identify areas
of interest based on a saliency map that aggregates low-
level features. They are designed to predict human fixations
and evaluate performance with user studies (Torralba et al.,
2006), whereas our work is designed to locate objects and
assess the performance of it.

The machine learning community has been interested in the
attentional capabilities of visual recognition in recent years.
Xu etal. (Xu et al., 2015) use a Recurrent Neural Network
(RNN) to generate captions for images, using an attention
mechanism that explains where the system focused attention
to predict words. Mnih et al. (Mnih et al., 2014) and Ba et
al. (Ba et al., 2014) also used RNNs to select a sequence
of regions that need more attention, which are processed at
higher resolution for recognizing multiple characters. These
models are trained by Reinforcement Learning as we are.
However, a simpler architecture and intuitive actions to
transform boxes are used in our work.

2.2. Summary of original paper

(Caicedo & Lazebnik, 2015) proposed an active detection
model for localizing objects in scenes. The model is a class-
specific active detection model that learns to localize target
objects known by the system. The proposed model follows
a top-down search strategy, which starts by analyzing the
whole scene and then proceeds to narrow down the correct
location of objects. This is achieved by performing a series
of transformations on a box that initially covers a large area
of the image, and that box is eventually reduced to a tight
bounding box. The sequence of transformations is decided
by an agent that analyzes the content of the currently visible
region to select the next best action. Each transformation
should keep the object inside the visible region while cutting
off as much background as possible. Figure 1 illustrates
some of the steps in the dynamic decision process for locat-
ing a cow in an image.

Figure 1. The progress of increasing IoR by iterative analysing
current state and taking actions and finally trigger to indicate that
an object is found. It is a duplicate figure from the original paper
(Caicedo & Lazebnik, 2015).



Improvements of active object localization with deep reinforcement learning

Their proposed approach is fundamentally different from
most localization strategies. Compared with sliding win-
dows, their methods do not follow a fixed path to search
objects. Instead, different objects in different scenes end
up with different search paths. Unlike object proposal al-
gorithms,candidate regions in their method are selected by
high-level reasoning strategies rather than by low-level cues.
In addition, compared with the boundary box regression
algorithm, their method does not locate objects according
to a single, structured prediction method. The proposed
dynamic attention-action strategy requires to pay attention
to the contents of the current region, and to transform the
box in such a way that the target object is progressively
more focused.

In this creative work, the entire image is viewed as
environment. State is defined as a tuple s := (o, h).
Here o is a feature representation of the observed region
extracted by a pre-trained CNN; h is a vector of the action
history. Actions are defined as a 9-dimensional space A :=
{trigger, right, left, up, down, bigger, smaller, fatter,
taller}. Each action makes a discrete change to the box
by a fixed factor 0.2 relative to its current size. The action
trigger means that the agent thinks it finds the object.

The reward function R (a, s→ s′) is defined for an agent
when it takes the action a to move from state s to s′ as
following:

R (a, s→ s′) = sign (IoU (b′, g)− IoU(b, g)) (1)

where IoU(b, g) = area(b ∩ g)/ area(b ∪ g) is the
Intersection-over-Union between the target object bounding
box g and the predicted box b.

With the action set, state set and reward function defined, the
authors directly applied DeepQNetwork algorithm (Mnih
et al., 2015) to learn the optimal policy. At the same time,
they also put forward a method to set a cross mask in the
image after taking the trigger action. This design allows for
effective detection of multiple objects.

3. Approach: algorithm development
This section provides detailed description about how we
design the improvement for all four aspects. Section 3.1,
3.2, 3.3 and 3.4 discusses state space, action space, reward
function and IOR mechanisim respectively.

3.1. State Space

In original paper, a Q-Network takes as input the image
inside current bounding box and gives as output the Q value
of the nine actions. The whole architecture, as shown in Fig
2, can be divided into two parts. First part is a pre-trained
CNN to extract features from raw pixels. It will output a

Figure 2. Architecture of the proposed QNetwork. It is a duplicate
figure from original paper.

vector of fixed length as o. If we concatenate this o with
action history h, we will get the current state that the agent
lies in. The definition of h is simple and complete enough,
thus we will mainly discuss more possibility of vector o.

As discussed above, the input of CNN is the image in-
side current bounding box. This crop of original picture is
firstly warped to match the input of the network (224×224)
and then put into a convolutional network, consisting of 5
convolutional layers, to extract the feature vector o. The
network that originally used is ZFNet (Zeiler & Fergus,
2014), which is put forward in 2013. However, there are
much more advanced CNN model which can be used to
extract stronger feature vectors. In comparison, we will
take Alexnet (Krizhevsky et al., 2012), Vgg16 (Simonyan
& Zisserman, 2014), Densenet (Huang et al., 2017), and
MobileNet (Howard et al., 2019) to explore how the change
in the state space can influence the result.

Alexnet (Krizhevsky et al., 2012) is a milestone in the de-
velopment of deep learning, which achieved great success
in the ImageNet Classification, representing the beginning
of the deep learning age. The Alexnet has 60 million param-
eters and 650, 000 neurons, contains 5 convolutional layers
with a final 1000-way softmax layer. The Alexnet is applied
to see whether a simple feature extraction network can have
a good performance in this work.

Vgg16 from (Simonyan & Zisserman, 2014) first emerged
the idea of using blocks. What they did was to increase depth
using an architecture with very small (3× 3) convolutional
layers and push the depth of convolutional layers to 16-
19 layers. Since the 16 layer VGG architecture gained
the best performance in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). In other improvements,
we used vgg16 as benchmark feature extracting network for
comparison.



Improvements of active object localization with deep reinforcement learning

ResNet has achieved (He et al., 2016) unforgettable success
in training deeper neural networks through reformulating
layers to residual networks, which increased the depth of
convolutional networks from 19 in VGG to 152. Densely
Connected Networks (DenseNet) further improved the struc-
ture of ResNet through several modifications. Similar to
Taylor expansion, ResNet decomposes activation function
into f(x) = x + g(x), a simple linear term and a more
complex nonlinear term, helping each layer of neural net-
work capture information of two layers. In comparison,
DenseNet has L(L+1)/2 direct connections in the network
if the network has L Layers, meaning that each layer con-
nects to every other layer in a feed-forward fashion in the
DenseNet. This improvement significantly alleviates the
vanishing-gradient problem and encourages feature reuse,
improving the result in ImageNet classification greatly. This
refinement in the performance became the reason why we
trained DenseNet as one of our potential feature extraction
models.

The birth of MobileNet represented the start of using deep
learning models in embedded devices. In an attempt to en-
able our model to be implemented in smartphones in the
future, we also trained the latest MobileNetV3 (Howard
et al., 2019) as feature extraction model. The MobileNetV3
updated its network through two aspects: 1. Layer removal,
1×1 expansion layer, the projection layer, the filtering layer
in the last block is removed and 32 filters were reduced to 16
filters 2. Swish non-linearity, swish(x) = x · sigmoid(x)
is its mathematical expression. Since a sigmoid function
is computationally ineffective, the author modified it to
h-swish: h − swish(x) = xReLU6(x+3)

6 . These two de-
velopments help the MobileNetV3 become faster and more
accurate compared with MobileNetV2.

Therefore, if we use these four networks instead of ZFNet
as the feature extractor, we believe that a more complete
state space can be obtained to improve the overall effect.

3.2. Action space

In original paper, the action space is defined to be a 9 actions
set - [trigger, right, left, up, down, bigger, smaller, fatter,
taller]. When the agent takes any action except trigger, it
will change the position of its bounding box in proportion to
current box size. The author fixes this changing proportion
α to 0.2 because this value gives a good trade-off between
speed and localization accuracy. However, both theoretical
analysis and experimental results show that this setup is
sometimes rigid. Imagine a situation that there is a small
object in the picture. Although the agent perceives that the
optimal bounding box is much smaller than current one, it
has no choice but to take multiple small steps to zoom in
the object. Another situation is that the current bounding
box is nearly optimal but needs only a small improvement.

The agent also has no choice but to shift the bounding box
by 0.2, which may miss some part of the object.

In order to alleviate the problem that each action can only
change the fixed size of bounding box, we put forward a new
action space for the agent, which makes changing proportion
α is optional instead of fixed. Our new action space is a 25
actions sets. The first action is still trigger with no change.
The remaining 24 actions can be divided into three groups
in order, each group has same 8 action types as original ones
but with different α value. We set α = 0.1 for first 8 actions,
α = 0.3 for next 8 and α = 0.5 for last 8. The last group
can be seen as ’large moves’, enabling agent to quickly
shrink bounding box to enlarge objects when they are found
to be very small. The first group can be seen as ’precise
moves’, allowing agent to make fine adjustments when the
current bounding Box is found very close to objects. And
the middle group can be seen as a balance between these
two kind of moves. The visualization of new action space is
shown in Fig 3.

After defining the new action space, we expect that agent
can learn a more flexible way to shrink its bounding box
for an object. If it perceives that the target object is much
smaller, it should prefer actions with α = 0.5 value to
approach target quickly. While if it perceives that the target
object is very close, it should prefer actions with α = 0.1 to
optimize the bounding box precisely.

Figure 3. Visualization of 25 actions set. The dotted line represents
the bounding box before the action and the solid line represents
the bounding box after the action.

3.3. Reward Function

In our algorithm, we proposed two kinds of rewards R,
namely Ra(s, s

′), which represents the reward when the
agent chooses action a to move from the current state s to the
next state s′ when a is not the trigger action, and Rω(s, s

′),
which represents the reward when the agent chooses action
ω to move from the current state s to the next state s′, which
is the terminal state, when ω is the trigger action. In the
original article, the author proposed the following reward
functions:

Ra(s, s
′) = sign(IoU(b′, g)− IoU(b, g)) (2)



Improvements of active object localization with deep reinforcement learning

Rω(s, s
′) =

{
+η if IoU(b, g) ≥ τ

−η otherwise
(3)

For non-terminal states, the reward function is +1 when the
agent have a better performance on localization and is −1
when the localization performance becomes worse. Tthe
performance of localization is measured by the Intersection-
over-Union (IoU ) between the ground truth of the target
object and the current region box. Notice that IoU can only
be calculated during the training stage because the ground
truth is needed. Let b and g be two regions, IoU(b, g) =
area(b ∩ g)/area(b ∪ g). For terminal states, the reward
function is +η when the IoU is greater than the threshold τ
and −η otherwise.

Based on the original settings, we discovered two problems
and make improvements accordingly.

Improvement 1: Set Ra = 0 when making progress

In the original setting, the author set Ra(s, s
′) = +1 when

making progress. However, we find that it will result in
the agent wandering before the final trigger. To be spe-
cific, to achieve a higher reward, the agent will move back
and force with little improvement of IoU before getting to
the triggering state. It will result in having more moving
steps than necessary before triggering. To resolve it, we
set Ra(s, s

′) = 0. It can help the agent find a way to the
trigger state with less steps. The corresponding rewards for
Ra(s, s

′) is as follows:

Ra(s, s
′) =

{
0 ∆IoU ≥ 0

−1 ∆IoU ≤ 0
(4)

Improvement 2: Add IoU information in Ra

The original setting only considered the sign of the variation
of IoU , in our improved version, we will also consider the
variation of IoU . The corresponding rewards for Ra(s, s

′)
is as follows:

Ra(s, s
′) =

{
0 ∆IoU ≥ 0

−1− β ∗
√
(∆IoU ) ∆IoU ≤ 0

(5)

in which β is the coefficient to control the weight of ∆IoU .
In the experiment session, we use gird search to search the
best β ∈ [0, 20] with the step-size of 4.

3.4. Inhibition-of-Return Mechanism

Inhibition of return refers to the relative suppression of
processing of stimuli that had recently been the focus of
attention. It is a very important component of attention,
in that it allows a model to rapidly shift the attentional fo-
cus over different locations with decreasing saliency, rather

than being bound to attend only to the location of maximal
saliency at any given time. IOR mechanisms have been
widely used in visual attention models to suppress the at-
tended location and avoid endless attractions towards the
most salient stimulus(Itti & Koch, 2001).

In the original paper, after an object is localized by the
current bounding box and ”trigger” action is performed,
the agent will marks the region covered by the box with
a black cross as shown in Figure 4a. This mark serves as
an IoR mechanism by which the currently attended area is
prevented from being attended again.

(a) The Process of adding IoR cross.

(b) The Process of adding IoR mask.

Figure 4. Comparison of IoR cross and mask.

However, it causes some problems and has negative influ-
ence on the prediction result in the following respect:

• The agent triggered an additional detection in a loca-
tion where a correct detection was placed before.
This happens because the IoR cross leaves some parts
of the object visible that may be observed again by the
agent.

• Detection missed after the mark added to the image.
This happens because the IoR cross covers additional
objects in the scene that cannot be recovered.

By analyzing the causes of these issues, we proposed a
new IoR Mark and corresponding prediction algorithm in
this paper to solve the above two problems. The experiment
section will show how they can improve the predicted results
greatly. There is a detailed explanation below, and they are
summarize in Algorithm 1.



Improvements of active object localization with deep reinforcement learning

3.4.1. NEW IOR MARK

We proposed a new IoR mark mask in order to solved the
problem caused by the old cross-like IoR mechanism. The
mask is created by the following steps:

Step 1:
Given the old bounding box old bdbox, we can get its edges
[xmin, xmax, ymin, ymax].

Step 2:
Given the image image, we can get its RGB value I .

Step 3:
Create a mask, whose shape is the same as I , and set all
value to 1.

Step 4:
Set new area as 0.75 × 0.75 of the central area of
old bdbox, i.e.
x′
min = xmin + 0.25× (0.5× (xmin + xmax)− xmin),

x′
max = xmax − 0.25× (0.5× (xmin + xmax)− xmin),

y′min = ymin + 0.25× (0.5× (ymin + ymax)− ymin),
y′max = ymax − 0.25× (0.5× (ymin + ymax)− ymin).

Step 5:
Set the new area’s value of mask be 0.2, i.e. the trans-
parency of the new area in mask is 20%.

Step 6:
Compute I ′ = mask ⊙ I to get the new image I ′, and the
⊙ is Hadamard product.

The transformation result is shown in Figure 4b.

3.4.2. NEW PREDICTION ALGORITHM

We proposed a new prediction algorithm in order to solved
the problem caused by repeated trigger, which is shown in
Algorithm 1. Specifically, this algorithm is divided into two
parts.

Part 1:
If the given bounding box has never been triggered before,
draw a new IoR mask on the image, save the new bounding
boxes and move to next iteration.

Part 2:
If the given bounding box has triggered before, enlarge and
darker the IoR mask already located in the bounding box,
discard the bounding box and move to next iteration. By
performing this, we can tell the agent that you have seen
this area before, so try to explore some new areas to find
new objects rather than focus on the same location.

Here is a example show in Figure 5.

Compared with the original paper that only draw a constant
cross, our approach shows a dynamic interaction between
the agent and the environment. At the very beginning, the

Algorithm 1 Prediction Algorithm

Input: data image, list old bdbox, list memory
Function: draw mask(bdbox)
Function: cal box(action)
Function: select action(image)
repeat

Initialize done = false.
Initialize action = select action(image).
if action is TRIGGER then
done = true
if bd box ∈ memory then

Do draw mask(old bdbox)
else

Update old bdbox← new bdbox
Update memory ← new bdbox
Do draw mask(new bdbox)

end if
else

Compute new bdbox = cal box(action)
Update old bdbox← new bdbox

end if
if step > max step then

Assign done = true
end if

until done is true
Output: list new bdbox, list memory

Figure 5. The process of new Prediction Algorithm. In the first
picture, the agent triggered the blue bounding box, thus adding a
mask shown in the second picture. In the second picture, the agent
triggered the same region (If IoU > 0.5, two bounding boxes are
seemed as the same trigger) as the first one, so the mask is enlarged
and darkened. The agent triggered an new area in the third picture,
thus adding a new mask as is shown in the fourth picture.



Improvements of active object localization with deep reinforcement learning

IoR mask is small and thin, which reduces the impact on the
agent’s ability to see elsewhere in and around the bounding
box. If the agent repeatedly trigger one area, the IoR mask,
or the invisible regions in the bounding box, will gradually
becomes larger and thicker, thus preventing the agent from
attending only to the location of maximal saliency at any
given time.

4. Experiment results
4.1. Experimental Setting

For all the improved parts that we proposed, we conducted
extensive experiments on PASCAL Visual Object Classes
Detection Dataset and received promising results. Because
of the limitation of computational resources and time, we
just use VOC2007 Training Set, which contains 2501 im-
ages, for training and VOC2007 Validation Set(Everingham
et al.), which contains 2510 images as test set. Our train-test
ratio is nearly 1:1. We also only tested on first 5 classes,
which is [cat, cow, dog, bird, car], instead of whole 20
classes. Because of using fewer training data, our result
for baseline (the same agent trained in original paper) may
appear worse initially. However, we want to point out that
our improved methods are not specifically designed for one
dataset or one class. Since their superiority is proved on
this small dataset, it is believed that the same improvement
will also appear when we apply it to larger dataset and even
achieve better performances.

When comparison, we use a reproduction of the agent from
original paper as baseline. In each section, we will train
several new agents using the methods we proposed, trying
to perform better than baseline model. We set IoU threshold
at 0.5, which means only predicted bounding boxes that
has IoU > 0.5 with ground truth will be considered a posi-
tive prediction. During all the tests, we use mAP (average
precison) and recall as main metrics, which is the same as
defined in VOC Competition.

4.2. Reproduction of Original Work

During the test, we first reproduced the results from the
original paper. Figure 6 is an example trained on the ’cat’
class, the predicted bounding box for each step along with
the action taken is shown. It is clear that the agent has
learned to take effective actions to transform the bounding
box and detect multiple objects by creating cross marks.

We can analyze the detection process of multiple objects
by plotting the IoU against number of actions. Figure 7 is
an example of an image with three dogs. After crossing
an already localized object, the agent is able to localize the
other ones. In the IoU plot, we can see that every time the
agent initiates a top down search, the IoU is relatively low.
As the agent interacts with the image and bounds the object

Figure 6. The agent localizing an image with two cat targets

tighter, the IoU rises and reaches a peak for every object
detected.

Figure 7. IoU plotted against number of actions taken

4.3. Improved State Space

As stated in experimental setting, after training each network
with VOC 2007 training set for 15 epochs and testing in
the validation set VOC 2007, we got average precision and
recall for 5 objects: cat, cow, dog, bird, and car.

Table 1. Comparison of Average Precision (AP) among different
state spaces trained with different feature extractor

cat cow dog bird car mAP
Alexnet 27.3 9.1 18.0 18.0 18.1 18.1
Vgg16 9.1 9.1 18.2 9.1 18.2 12.7

DenseNet 9.1 9.1 9.1 9.1 9.1 9.1
MobileNet 12.1 9.1 8.8 9.1 9.1 9.6

First observing Table 1 for average precision, we can find
that Alexnet ranked first in cat and bird while Vgg16 had the
highest average precision in dog and car. The mean average
precision of Alexnet is the highest among the 4 models and
it is much higher compared with the other 3 models.



Improvements of active object localization with deep reinforcement learning

Table 2. Comparison of recall among different state spaces trained
with different feature extractor

cat cow dog bird car avg
Alexnet 20.2 7.0 16.1 11.5 12.2 13.4
Vgg16 9.6 2.3 13.5 6.9 10.1 8.5

DenseNet 8.6 2.3 9.7 3.6 9.3 6.7
MobileNet 12.6 0.6 9.7 4.6 8.4 7.2

When it comes to Table 2 of Recall, Alexnet won the cham-
pion in all objects and it is obvious that Alexnet has the
highest average recall. The great performances of Alexnet
in both average precision and recall suggest that Alexnet
can extract features that are most suitable for agents to learn
how to localize objects compared with other models.

These results may be counter intuitive. There might be sev-
eral underlying reasons why Alexnet and Vgg16 perform
better than the other two deeper networks in both average
precision and recall. Firstly, the Alexnet with 5 convolu-
tional layers and Vgg16 with 16 convolutional layers are
shallower than the other two nets, which produces lower
level extracted features. In comparison, the higher level
extracted features by deeper networks may be too difficult
for agents to observe the details of the image. For example,
the receptive field of last layer in DenseNet is 117 × 117,
which is much larger than 17× 17 for Alexnet and 27× 27
for Vgg16. Therefore, if we use these higher level featurs
as our state vector, it may be harder for the agent to ob-
serve detail information and analyze its action. Besides,
the number of dimensions of feature vector o might also
contribute to the result. The feature vector dimensions for
AlexNet, Vgg16, MobileNet and DenseNet are 9216, 25088,
28224 and 50176 respectively. If the dimensions of fea-
ture vector increases, the possible state spaces will extend
exponentially, which makes it harder for agent to learn a
good mapping. Therefore, it is also the reason why we can
not just extract several lower layers of advanced network to
get low level features. In this manner, the feature map will
be much larger (e.g. 112 × 112 × 32), which will lead to
millions of state space dimensions. It is absolutely harmful.
This might also because a large dimension of the feature
vector will reduce the effect of history vector h, preventing
the agent from learning the knowledge of the past, (h only
has 81 dimensions).

In conclusion, the mean average precision and mean recall
from the two tables indicate that the use of shallow networks
with small output state vector could achieve better result for
the agent.

4.4. Expanded Action Space

After extending original 9-action space to 25, we trained
two models, keeping all other settings same, and tested it on

Table 3. Comparison of AP among different action spaces
cat cow dog bird car mAP

9-action 18.2 9.1 18.0 9.1 18.2 14.5
25-action 9.6 2.3 13.5 6.9 10.1 12.0

9-action + improve 45.2 6.2 35.3 12.6 16.5 23.2
25-action + improve 49.7 18.2 36.1 13.5 14.7 26.5

Table 4. Comparison of recall among different action spaces
cat cow dog bird car avg

9-action 18.2 1.8 14.6 6.9 10.8 10.5
25-action 15.9 1.5 13.2 5.7 9.5 9.2

9-action + improve 43.4 14.0 35.2 16.1 18.5 25.4
25-action + improve 50.4 12.9 31.5 17.4 15.7 25.8

VOC2007 validation dataset. The mAP result is shown in
3 and recall is shown in 4 by row 1 and 2. We can observe
that the performance of our 25-action model is even worse.
After some verification tests, we find several possible rea-
sons for this phenomenon. First, as we discussed in reward
function section (3.3), agent with original reward function
setting sometimes has a problem that keeping transform-
ing its bounding box without trigger. This kind of agent
has a behaviour we called ’swipe scores’2, because it keeps
getting +1 even if it only increases IoU a little bit.

We observe that this kind of phenomenon becomes more
common in 25-action model. It is also easier to under-
stand because we have more α values now. For exam-
ple, an 25-action agent can keep following three actions
from beginning to get infinite rewards: smaller(α = 0.1),
smaller(α = 0.1), bigger(α = 0.5). After these three ac-
tions, the agent will remain in the same state, and receive
reward r = −1+1× 0.9+1× 0.92 = 0.71. This will lead
to a loop of all three actions and no localization of object.
Also, another problem is that the unbalance distribution of
trigger samples. Because in training process, as long as a
trigger action is taken, no matter it is from greedy option
or non-greedy option, the agent will stop interaction with
current image and skip to next one. Therefore, trigger sam-
ples actually has an upper bound which is number of all
the training images, while samples for other actions do not.
So there will be much fewer samples of trigger than other
actions. For normal reinforcement learning, it is always not
the problem because there are few states that has trigger
action which leads to a terminal state. So the state-action
pairs (s, trigger) actually consist of a small part of all pairs.
However, for this task, it is not the case. Because every crop
of image may be the final bounding box, every state has a
trigger action. In this situation, the unbalance distribution
of trigger samples will be harmful because the agent may
not have enough samples to learn the mapping from state
to q value of trigger. To solve these two problems, we first
switch our reward function proposed in section 3.3 with 0

2It means keep a circle of actions to get higher scores



Improvements of active object localization with deep reinforcement learning

for IoU increasement and -1 for IoU decreasement. Then we
use a trick called ’extra trigger’, that will force the agent to
simulate a trigger action on current state. This extra trigger
sample will be added to Memory Replay but will not affect
the interaction with agent and environment. The frequency
of extra trigger is very important because it will control
the percentage of how many trigger samples there will be
among all samples. We set the frequency to one exra trigger
every 20 samples.

Then, we applied these two improvements on both 9-action
model and 25-action model for comparability and get results
shown in row 3 and 4 in Table 3 and 4. We can see after
apply the improvement, 25 action model keeps showing
superiority over 9-action model on the main metric - mAP.
It provides the evidence for the effective of both new action
space and improvement on extra trigger samples. There
are several extra interesting observations. First, after im-
provement, the superiority of 25-action model over 9-action
model is more obvious on mAP than recall. Especially in
class cow and dog, the recall of 25-action model is even
lower. Although with lower recall, its precision of corre-
sponding class is still higher. It shows a strong evidence that
25-action can predict more precise bounding boxes. Also,
there is a speical class - car, where the improvement did not
increase its AP. After some analysis, we find that the images
in car class contains much more objects than others. For
example, there is nearly the same 160 images in class cat
and class car. However, car dataset has 800 objects, which
is 4 times than 200 objects in cat dataset. Therefore, the
bottleneck for predicting car bounding boxes well will be in
IoR Mechanism instead of reward or actions. That may be
why these improvements did not work for class car.

Here we provided some visualization results about differ-
ence predicting process between 9-action model and 25-
action on same images in Fig 8. We can see that 25-action
model always predict more precise bounding boxes with
mostly fewer steps.

Figure 8. Visualization of predicting sequences of 9 action model
and 25 action model.

4.5. Improved Reward Function

In this session, we applied the combination of the sign of
variation of IoU and the variation value of IoU to our
improved reward function. For all experiments except for
the base group, we set Ra(s, s

′) = 0 when ∆IoU ≥ 0. We
make comparisons between the AP and recall for different
categories, the mAP and average recall among all groups
based on different β.

Table 5. Average precision with different β.
cat cow dog bird car mAP

Base 18.2 9.1 18.2 9.1 9.1 12.7
β = 0 36.4 10.7 36.1 16.2 17.7 23.4
β = 4 45.2 17.3 35.4 12.0 17.1 25.4
β = 8 44.3 10.7 3.1 11.5 7.0 15.3
β = 12 48.6 1.2 37.5 19.1 10.7 23.4
β = 16 18.3 6.4 23.8 4.7 13.9 13.4
β = 20 28.3 7.7 26.1 15.2 10.0 17.5

Table 6. Recall with different β.
cat cow dog bird car avg

Base 15.2 2.9 15.4 7.2 9.8 10.1
β = 0 38.4 13.5 31.5 13.8 21.1 23.7
β = 4 43.4 16.4 37.4 18.7 22.1 27.6
β = 8 45.5 24.0 42.3 20.0 23.1 31.0
β = 12 53.0 24.0 44.6 20.3 26.3 33.6
β = 16 53.5 25.7 40.4 21.0 24.7 33.1
β = 20 54.0 26.3 46.1 26.2 23.8 36.7

As is shown in Table 5 and 6, both AP and recall have
drastically improvements after changing the reward when
∆IoU ≥ 0 from +1 to 0. From Table 5, we can see the
best APs among different groups are achieved at different
β values. The highest mAP is achieved when β = 4. From
Table 6, we can see that the recall of different categories
gradually increases as β increases, and the maximum value
is achieved when β = 20.

We also compare the frequency distribution of different num-
ber of steps of the trigger events. As can be seen from Fig
9, most trigger events happen when the number of actions
is less than 10. At the same time, we discover the base-
line reward function has the largest mean and median value
of number of steps. After converting Ra(s, s

′) to 0 when
∆IoU ≥ 0, the number of steps before triggering become
less in general. It represents a faster localization speed.

We also compare the number of trigger events after improv-
ing the reward functions. As can be seen from Fig 10, the
number of triggering events has a drastically increase after
we improve the reward function. For β = 4 and β = 20,
which achieve the best mAP and average recall separately,



Improvements of active object localization with deep reinforcement learning

(a) baseline (b) β = 4 (c) β = 20

Figure 9. Comparison of frequency with different β.

Figure 10. The cumulation of trigger events with different β.

cat cow dog bird car mAP
Cross 42.7 10.2 32.6 17.5 15.5 23.7
Mask 52.1 17.3 43.5 25.0 25.8 32.7
∆ 22.0% 69.6% 33.4% 42.9% 66.5% 38.1%

Table 7. Comparison of mean Average Precision between IoR cross
and Mask.

cat cow dog bird car AVG
Cross 47.0 13.5 41.9 16.4 23.1 28.4
Mask 50.0 17.0 44.9 20.3 26.0 31.6
∆ 6.4% 25.9% 7.2% 23.8% 12.6% 11.3%

Table 8. Comparison of mean Recall between IoR cross and Mask.

the reward function when β = 20 has the most trigger events
given the same data-set.

4.6. Inhibition-of-Return Mechanism

In this part, we set the epoch num = 20 for training, and
compare the mean Average Precision and mean Recall be-
tween applying the original paper’s IoR cross and applying
our proposed IoR mask plus Prediction Algorithm in the
test set. The result is shown in Table 7 and Table 8.

Generally, it turns out that our proposed IoR mask and

new Prediction Algorithm can greatly improve the result of
Average Precision and Recall. We can further analyze the
experimental results from these two tables.

In Table 7, the mean Average Precision of all classes go
up from 23.7 to 32.7, which is improved 38.1%. The in-
crement in Average Precision shows that our method can
predict more accurately. This is largely benefited from the
new IoR mask. By applying the gradually changed IoR
mechanism, regions that are triggered at the beginning will
not be covered heavily, so the agent can get more informa-
tion in and around the triggered area to predict the adjacent
object more accurately. Therefore, the Average Precision
increases, especially in class cow and car, which have rela-
tively more adjacent objects.

In Table 8, the mean Recall of all classes go up from 28.4
to 31.6, which is improved 11.3%. The increment in Recall
shows that our method can predict more correct objects.
This is benefited from the new Prediction Method. If the
agent triggered one region repeatedly, the invisible part of
that region will get larger and darker, thus leading the agent
to pay more attention to other areas in the image. This
algorithm stimulates the agent to explore new regions, so
the mean Recall is boosted.

5. Conclusion
In this project, we explored diverse ways to improve an gent
on active object localization using deep reinforcement learn-
ing and achieved promising results. We first reproduced the
training process of original paper, then proposed and imple-
mented improvements in four aspects. In state space, we
replaced feature extractor part of Q-Network with several
advanced CNN network, then discovered that use of shallow
networks with small output state vector, like AlexNet or
Vgg16, could achieve better result for the agent. In action
space, we proposed a more flexible 25-action model and
used extra trigger training to avoid the unbalance of trigger
samples, then achieved more efficient and accurate predic-
tions using this extended action space. In reward function,



Improvements of active object localization with deep reinforcement learning

we put forward 0 positive reward to prevent the agent from
wandering around the target object without trigger, then did
extensive search to find out the optima value for β is 4 and
20. In IoR mechanism, we replaced the original cross with a
mask and put forward new prediction algorithm for multiple
objects. The experimental results showed that our new IoR
mechanism achieved nearly 40% mAP increasement.

Last but not least, we must point out that our improvement
is based on general process of using an agent to do object
localization instead of this specific paper. Therefore, it is
possible to expand some ideas in this project to other papers
and achieve even better results.

References
Ba, J., Mnih, V., and Kavukcuoglu, K. Multiple ob-

ject recognition with visual attention. arXiv preprint
arXiv:1412.7755, 2014.

Borji, A. and Itti, L. State-of-the-art in visual attention
modeling. IEEE transactions on pattern analysis and
machine intelligence, 35(1):185–207, 2012.

Bueno, M. B., Nieto, X. G.-i., Marqués, F., and Torres, J.
Hierarchical object detection with deep reinforcement
learning. Deep Learning for Image Processing Applica-
tions, 31(164):3, 2017.

Caicedo, J. C. and Lazebnik, S. Active object localization
with deep reinforcement learning. In Proceedings of the
IEEE international conference on computer vision, pp.
2488–2496, 2015.

Divvala, S. K., Hoiem, D., Hays, J. H., Efros, A. A., and
Hebert, M. An empirical study of context in object detec-
tion. In 2009 IEEE Conference on computer vision and
Pattern Recognition, pp. 1271–1278. IEEE, 2009.

Endres, I., Shih, K. J., Jiaa, J., and Hoiem, D. Learning
collections of part models for object recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 939–946, 2013.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J.,
and Zisserman, A. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ra-
manan, D. Object detection with discriminatively trained
part based models. tpami, 2010.

Gonzalez-Garcia, A., Vezhnevets, A., and Ferrari, V. An
active search strategy for efficient object class detection.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3022–3031, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hosang, J., Benenson, R., and Schiele, B. How good
are detection proposals, really? arXiv preprint
arXiv:1406.6962, 2014.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 1314–1324, 2019.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Itti, L. and Koch, C. Computational modelling of visual
attention. Nature reviews neuroscience, 2(3):194–203,
2001.

Jie, Z., Liang, X., Feng, J., Jin, X., Lu, W., and Yan, S. Tree-
structured reinforcement learning for sequential object
localization. In Advances in Neural Information Process-
ing Systems, pp. 127–135, 2016.

Juneja, M., Vedaldi, A., Jawahar, C., and Zisserman, A.
Blocks that shout: Distinctive parts for scene classifica-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 923–930, 2013.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25:
1097–1105, 2012.

Lim, J. J., Pirsiavash, H., and Torralba, A. Parsing ikea
objects: Fine pose estimation. In Proceedings of the
IEEE International Conference on Computer Vision, pp.
2992–2999, 2013.

Malisiewicz, T., Gupta, A., and Efros, A. A. Ensemble of
exemplar-svms for object detection and beyond. In 2011
International conference on computer vision, pp. 89–96.
IEEE, 2011.

Mnih, V., Heess, N., Graves, A., et al. Recurrent models
of visual attention. In Advances in neural information
processing systems, pp. 2204–2212, 2014.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.



Improvements of active object localization with deep reinforcement learning

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Singh, S., Gupta, A., and Efros, A. A. Unsupervised dis-
covery of mid-level discriminative patches. In European
Conference on Computer Vision, pp. 73–86. Springer,
2012.

Torralba, A., Oliva, A., Castelhano, M. S., and Henderson,
J. M. Contextual guidance of eye movements and atten-
tion in real-world scenes: the role of global features in
object search. Psychological review, 113(4):766, 2006.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudi-
nov, R., Zemel, R., and Bengio, Y. Show, attend and
tell: Neural image caption generation with visual atten-
tion. In International conference on machine learning,
pp. 2048–2057. PMLR, 2015.

Zeiler, M. D. and Fergus, R. Visualizing and understand-
ing convolutional networks. In European conference on
computer vision, pp. 818–833. Springer, 2014.

use of shallow networkswith small output state vector could
achieve better result forthe agent.

Member Contribution

Table 9. Contribution of Each Member
Name Responsible Part

Jiawei Lu IoR Mechanism Improvement
Lingyu Zhang Action Space Improvement

Xinyi Liu Reward Function Improvement
Yukai Song State Space Improvement
Zixuan Yan Action Space Improvement


