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ENTROPY CONSTRAINED INFORMATION BOTTLENECK
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ABSTRACT

The information bottleneck (IB) is a principle for learning compressive repre-
sentations for predictive tasks. While it has been controversial whether neural
networks are inherently compressing features, studies using neural networks to
explicitly parameterize the IB objective showed promising results in terms of gen-
eralization and robustness. The main challenge lies in the estimation and opti-
mization of mutual information for high dimensional data. Specifically, when the
mapping from input X to the encoded representation 7 is injective, the mutual
information is either infinite or piece-wise constant and independent of model
parameters. In this work we propose to tackle these issues by using determinis-
tic encoding along with actual quantization on latents, rendering the problem a
source compression. By doing so, finite non-trivial mutual information can be
estimated. We further integrate variational entropy estimation commonly used in
neural lossy compression to jointly optimize the encoder and entropy model. We
evaluate our method on supervised and self-supervised learning tasks for general-
ization, and against adversarial attack for robustness. We show that our method
is able to learn compact and sparse representations that exhibit improved gener-
alization and stronger robustness against adversarial attacks. Code is available
https://github.com/lingyu98/cSCL

1 INTRODUCTION

Formulating principles for learning optimal representations has been one of the fundamental prob-
lems in machine learning. The information bottleneck (IB) [Tishby et al.| (2000) introduced a prin-
ciple for representation learning that trades off informativeness of the target variable and compres-
siveness with respect to the input variable, enforcing representations to be the minimal sufficient
statistics of the input. The intuition is that when learning a predictive task X — Y, the interme-
diate representation 7" should contain sufficient information about Y, but also minimal information
about X, compressing out the information in X that is irrelevant of the task. The measurement for
informativeness is the mutual information:

T =argmax I(Y;T) st I(X;T)<r (1)
T

Where the MI between the input variable and the representation I(X;T) is bounded by some 7.
The above objective can be formulated as the following Lagrangian to circumvent the non-linear
constraint:
T =argmax I(Y;T) — pI(X; T) 2)
T

With 3 being the Lagrangian multiplier. Optimizing the objective above for different s correspond
to different points on the IB curve.

In [Shwartz-Ziv & Tishby| (2017), an attempt was made at explaining the generalization abilities of
neural networks with the IB. The authors argue that neural networks learned with SGD is inherently
optimizing for something approximating the IB objective. They identified in the training procedure
a fitting phase that increased I(X; T') and I(T'; V') and a compression phase that decreased I(X;T).
The claim was controversial as/Saxe et al.|(2018)) argue that the observed phenomenon was a result of
saturating non-linearities and they questioned the causality between compression and generalization.
More recently, |[Lorenzen et al.[(2022) aimed at resolving the controversy by computing exact mutual
information of quantized neural networks, confirming the existance of a compression phase and also
its dependency on activation functions.
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On the other hand, another line of research have been conducted in directly parameterizing the
IB objective. The idea is appealing because many issues in deep learning could in principle be
addressed by the IB. Over-fitting, spurious correlations, adversarial susceptibility, all can be seen as
a consequence of learning irrelevant information. However, the authors of Tishby et al.| (2000) only
proposed an iterative algorithm for discrete low dimensional random variables that obtains a local
optimum. The difficulty in generalizing to high-dimensional data is still in the estimation of mutual
information. Specifically, when the input variable and encoded representation are both continuous,
the mutual information becomes oco|Amjad & Geiger| (2019). For discrete data, if the encoder ¢(¢|z)
is injective, there is essentially no loss of information, therefore 1(X; Z) is independent of model
parameters. Another challenge that prohibited the effectiveness of the approach was discussed in
Kolchinsky et al.[(2019), where they listed several caveats of IB when X and Y have a deterministic
relationship, including the ineffectiveness of the IB Lagrangian and the existence of trivial solutions.

In recent years, many attempts at tackling these problems has been made. To address the issue of es-
timating mutual information, Alemi et al.|(2017) proposes to use a stochastic NN, so that the encod-
ing is surjective. They derive a variational bound on the mutual information and uses Monte-Carlo
sampling for optimization. Belghazi et al.|(2018) worked with the Donsker-Varadhan representa-
tion for estimating mutual information. |Yu et al.[(2021]) incorporates a matrix-based Renyi’s entropy
functional to parameterize mutual information. Variations to the IB objective has also been explored.
Fischer| (2020) suggests that the mutual information between the representation and input variable
should be replaced with a conditional mutual information, with the target variable as condition since
only the irrelevant information in the input should be compressed. [Strouse & Schwab)|(2017) showed
that by adding another parameter to control the encoder stochasticity, the new objective encourages
a deterministic encoder.

In this work, we describe an alternative for optimizing a deterministic encoder. While |Shwartz-Ziv
& Tishby| (2017) only used quantization for estimating mutual information, we propose to actually
perform quantization to the latent codes. In this way, different inputs can be mapped to the same
quantization bins, yielding finite mutual information. We show in[3.3]that for deterministic encoders,
mutual information becomes the entropy of latent codes, which coincides with lossy data compres-
sion. Recent advances in neural image compression have introduced powerful entropy estimators for
discrete variables. We benefit from this by incorporating an entropy model parameterized by neural
networks to estimate the entropy of representations. This continuous relaxation is a differentiable
upper bound Shannon entropy, so it can be jointly optimized with the encoder and decoder. The
plug-in nature of the entropy model makes it simple to apply to different learning tasks. We evalu-
ated on CIFAR-10 |Krizhevsky et al.| (2009) for generalization performance of supervised learning.
We also apply the entropy constraint to self-supervised contrastive learning tasks. Furthermore, we
tested the robustness of our learned models under adversarial attacks.

2 RELATED WORK

Singh et al.[(2020) adopts a similar architecture as ours for compressing features with the goal of
saving bits, without theoretical discussion of relationship with the IB.|Dubois et al.|(2021)) provided
lower bonds on the compression of representations for guaranteeing prediction performance. |Lee
et al.| (2021) applied the conditional entropy bottleneck to contrastive learning tasks. Different from
our approach, they used a stochastic encoder and modeled the representations as Gaussians. They
followed a variational approach towards optimizing their objective.

3 THE ENTROPY CONSTRAINED INFORMATION BOTTLENECK

3.1 DERIVATION OF THE ECIB OBJECTIVE
The Information Bottleneck:

Tx = argqrﬂnax](Y;T) - BI(X;T) 3)

With 8 € R>(.The Conditional Entropy Bottleneck Fischer (2020) modifies the the second term of
the IB objective into a mutual information conditioned on Y, which resulted in more robust perfor-
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mance:
T* =argmax [(V;T) — BI(X;T|Y) 4)
T

To understand the motive, consider the venn diagrams in[I] The red and blue circle represents the
entropy of random variable X and Y. The optimal representation z should be the area where z
contains all the information in X that is relevant to Y and nothing more, as shown in the graph on
the left side. However, if there’s no compression term, only maximizing the mutual information
between z and Y can result in a representation in the graph on the right side. This satisfies the ob-
jective of a maximized I(Y’; z) but contains useless information that would effect the generalization
and robustness of the model. The compression term in the IB objective minimizes I(z; X ), which
corresponds to the intersection between the area of X and z in the graph. However, Fischer| (2020)
pointed out that the actual information that should be minimized is the information that is common
between X and z but irrelevant to Y, corresponding to the area of the intersection of X and z but
with the intersection of z and Y removed. This is just the conditional mutual information between
z and X, given Y, resulting in the second term of CEB.

Figure 1: Left: Venn diagram of the optimal representation z obtained by the IB objective. Right:
Venn diagram of a possible representation z obtained without the compression term.

By the chain rule of mutual information, the above can be written as:

T =argmax I(YV;T) — B[I(T; X,Y) — I(T;Y)] (5)
T

For most prediction tasks, the following Markov constraint holds true: Z < X <— Y. Given
this constraint, all the information about Y in Z is obtained from X. The above objective therefore

becomes:
T =argmax [(Y;T) — B[I(T; X) — I(T;Y)]
T

= arg;nax(ﬁ + D) I(Y;T) - 8I(T; X) (6)
= argmax(f + 1)(H(Y) = H(Y|T)) = S(H(T) - H(T|X))

Notice H(Y) is a property of the dataset, it can be seen as a constant with respect to 7" and therefore
can be dropped from the function.

7" = argmax —(8 + DH(Y|T) - BH(T) + BH(T|X)

— arguin(§ + 1H(Y|T) + SH(T) - BH(T|X) ™

For a deterministic encoder, the conditional entropy (or noise entropy) H(T'|X) = 0 (Strouse &
Schwab| (2017)).

T = argj{nin(ﬁ +1V)HY|T)+ pH(T)

= in H(Y P H ®
fargqrwmn ( |T)+m (T)
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Replace % with a new parameter v € [0, 1) gives us the final form of the ECIB objective:

T* =argmin H(Y|T) + ~vH(T) )
T

Deriving the deterministic version of the original IB would result in almost the same form as the
equation above, except in that case the parameter v = /3 and is not confined in [0, 1). For a super-
vised classification problem, the first term in the EIEB H((Y'|T) can be equivalent to optimizing
for the average cross-entropy loss. The second term H (T') is just the entropy of the representations.
Minimizing this term can be formulated as a source compression problem.

3.2 ENTROPY ESTIMATION

Recent years, many advances have been made in lossy data compression. This is largely due to the
nonlinear approximation ability of neural networks. Traditional codecs such as JPEG and JPEG2000
uses linear transform suchs as DCT and Wavelet transforms to decorrelate signals, perform efficient
vector quantization to their transformed coefficients according to hand-designed quantization tables.
Ballé et al.| (2017) suggested that learning nonlinear transforms as encoder and decoders end-to-
end and performing scalar quantization in the transformed space is effectively performing optimal
vector quantization in the pixel space, and could yield improved rate-distortion performance. The
key ingredient in this framework is a differentiable entropy model that can estimate the marginal
distributions of the transformed coefficients (or latent variables), such that lossless entropy coding
can be applied. In Ballé et al.| (2017), the authors proposed a piece-wise linear function to model
the entropy of latent variables, essentially a histogram of probabilities. This serves as a continuous
relaxation of the Shannon entropy of the latent variables. In Ballé et al.| (2018), a more refined
entropy model was introduced to model the dependencies among latent dimensions. Now every
latent element is modeled as a Gaussian distribution, and the same factorized model mentioned
above is used to model the parameters of the Gaussians. Since the model is learned end-to-end
to optimize the rate-distortion trade-off, the entropy model and the encoder function are jointly
optimized, encouraging the encoder to produce low-entropy latents. In this work, we adopt this
entropy model to estimate the entropy of 7" and jointly optimize our encoder.

3.3 OVERALL IMPLEMENTATION

We show the diagram of our model in Figure 2. At first, we pass the input data into out encoder
network, and output a representation h. This h will then be used to estimate the Shannon entropy
of the quantized version its self. The quantization is necessary because Shannon entropy requires
discrete symbols. The quantization step is also the main source of information loss. We follow
Ballé et al.[|(2017) and implement a simple rounding for quantization, relying on the encoder to
approximate the optimal transform for scalar quantization. However, this quantization step will
be problematic for end-to-end optimization because the gradient of a step function is 0 or infinite
everywhere. We use a straight through estimator to enable gradient descent.
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Figure 2: Model Diagram
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Quantization error modeling methods such as uniform additive noise. However, in our case the

The quantized representations is then passed trough a fully connected layer to predict the categorical
distribution of labels. We used a similar entropy model as in Ballé et al.|(2018)), except that instead
of using convolutional layers, we implemented fully connected layers with ReL.U as activation func-
tions. This is because the dataset that we worked on has a smaller scale and spatial information is
not of much use in the latent representations. The entropy model estimates the Gaussian parameters
of the marginal distribution of each dimension of the quantized latents, and we compute the number
of bits needed to code the actual latents using these Gaussians as priors. We use the Lagrangian
multiplier in the loss function to control the Rate-Distortion trade-off.

4 EXPERIMENTS

4.1 SUPERVISED CLASSIFICATION

In the supervised classification task, we use the cross-entropy loss a proxy for mutual information
between Y and Z since they both represent informativeness. By adding the entropy penalty, we get
the loss function for a classifier:

Lsup = H(Y1go(f4(X))) + BH(f4(X)) (10)

Where gy is the decoder function that maps a representation to a categorical distribution over labels,
and fy is the encoder function that embeds the input into a representation.

We first trained a supervised learning classification model, and compared the models using different
compression rates. We show that with compression rates down to 0.13 bits per dimension, the test
accuracy is still comparable and sometimes higher than the model trained without compression.

Test Accuracy
Test Accuracy
KR

00 01 02 03 04 00 01 0.2 03 04
bits ber dimension bits ber dimension

Figure 3: Classification accuracy on the test set

By visualizing the gradient saliency maps |Chattopadhay et al.| (2018)) of selected images, we show
that models trained with only cross entropy sometimes overfit to backgrounds like the sky and water,
while the compressive model is often able to compress that information out.

4.2 CONTRASTIVE LEARNING

The entropy constraint can also be applied to contrastive learning. It has been shown in|Oord et al.
(2018) that the contrastive loss based on noise contrastive estimation is a lower bound of the mutual
information between randomly augmented views. In this case, the target variable would be another
view of the same data. We can apply the deterministic information bottleneck objective to this:

¢x = argming — 1(X1|Xo) + BH(fy(X1)) + BH(fs(X2)) (11)

Where fy4 denotes the encoder function, X, X5 are 2 randomly augmented views of the same image.
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compressive CE compressive

Figure 4: Gradient Saliency Maps

We evaluate the representations on the standard linear classification protocol for contrastive learning.
We find that compressive self-supervised representations generalize better than the vanilla Simclr

(2020), with a higher test accuracy.

Table 1: Linear Evaluation

Model Train Accuracy Test Accuracy
SimCLR 71.97 71.04
Compressive(5=0.05) 71.51 71.06
Compressive(5=0.1) 71.73 71.31
Compressive(3=0.5) 71.14 70.66

4.3 ADVERSARIAL ROBUSTNESS

We evaluate for non-regularized and regularized models. The non-regularized models where trained
for 330 epochs, with no data augmentation and weight decay. The regularized models where trained
for 100 epochs, took in randomly augmented images at training time, and was applied with a weight
decay of 0.0001. CE denotes the model trained with cross entropy loss, different s correspond to
models trained with different compression rates.

Table 2: Adversarial Robustness evaluation of different models.

‘ Adversarial Attack on non-regularized ResNet-18

Model CE | B=05 | B=1 | B=2 | B=4 | B=8 | B=32
Clean 7825 | 77.80 | 7834 | 78.50 | 7841 | 77.15 | 74.27
PGD (steps=7) 148 | 4429 | 4054 | 27.28 | 3339 | 36.51 | 26.68
PGD (steps=20) | 1.15 | 39.00 | 32.34 | 20.86 | 1949 | 24.95 | 15.40

Adversarial Attack on regularized ResNet-18
Model CE | B=05| B=1 | B=2 | B=4 | B=8 | B=32

Clean 85.99 86.36 86.10 | 86.41 | 85.86 | 84.09 | 80.28
PGD (steps=7) 0.02 0.21 0.04 0.17 0.12 0.81 3.56
PGD (steps=20) 0.00 0.05 0.00 0.04 0.00 0.54 1.82

The reason that we tested for non-regularized models is to show the effect of the entropy constraint
on its own. These results show that the entropy constraint is beneficial for more learning robust
representations, especially for non-regularized models. The reason why regularized models don’t
benefit that much from compression might be due to the robustness and generalization trade-off
Tsipras et al.| (2018)), where overfitted models exhibit higher robustness.
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4.4 SPARSITY

We continue to investigate properties of the compressive representations and observe strong spar-
sity. We show in Figure 5 left that with as low as an average of 7 non-zero entries among a 512
dimensional representation vector, the model is still able to achieve performance comparable to
non-compressive models.

We can also look at the fully connected layer, which is just a linear transformation matrix that
maps the representations to logits. We found that with higher compression, the singular values of
the transformation matrix tend to aggregate into fewer larger ones, becoming more approximately
low-rank.
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Figure 5: Left: x-axis:beta parameter, corresponding to compression strength; y-axis: the average
number of non-zero entries in the learned representations. Right: Singular value distribution of the
fully connected layer weight matrix

It’s also worth noting that the compressed representation does not necessarily have to be the last
layer before the fully connected layer. It could be the output of any intermediate hidden layers. We
also applied the entropy penalty on the outputs of the second convolutional layer, and visualize in
Figure 6. the sparse feature maps it has learned.

HETENLLAN INEESEEE DENENEEE
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Figure 6: From left to right: the 64 feature maps learned by no-compression, weak compression and
strong compression.

5 CONCLUSION
In conclusion, our information theoretical objective along with entropy estimation was able to learn
more sparse, robust and generalizable representations compared to no entropy constraint.

For future work we would like to first improve generalization. Even though we have seen compa-
rable or slightly improved test accuracy over non-compressive models, there still remains space for
improvement. A direction that would be interesting is to use deep mutual information estimation

7
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Belghazi et al. (2018) for H(Y'|Z). Applying out method to a wider range of tasks and data domains
is also worth exploring.
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